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Abstract
Generalization of the Euler-type solution to the wave equation is given.
Peculiarities of the space–time structure of obtained waves are considered.
For some particular cases interpretation of these waves as ‘subliminal’ and
‘superluminal’ is discussed. The possibility of description of electromagnetic
waves by means of the scalar solutions is shown.

PACS numbers: 41.20.Jb, 03.50.De, 41.60.-m

The goal of this paper is to generalize the specific solution of the wave equation with four
independent variables

ψ = (1/R) f (�) (1)

on the nonaxisymmetric case.
Here

R =
√

(z − βτ)2 + (1 − β2)ρ2 � = τ − βz ± R (2)

where the time variable is denoted as τ = ct , c is the velocity of light (that is for scalar waves
the wavefront velocity), ρ and z are the space–time variables in the cylindrical coordinates, f

is an arbitrary function, and β is an arbitrary complex parameter. Using terms introduced
by Courant [1], one can treat the wavefunction (1) as a family of relatively undistorted
progressing waves with the distortion factor 1/R and the phase function �. The Euler
spherical wavefunction ψ = (1/r) f (τ − r) , r =

√
ρ2 + z2 and the axisymmetric waves

of Brittingham type [2] ψ = (1/ (τ − z)) f
(
τ + z − ρ2/ (τ − z)

)
are degenerated cases of

the above solution. Calculations of solution (1) have been based on the complex space–time
ray theory [3]. However, result (1) may be obtained by means of linear transformation from
the Euler wavefunction. Constructing nonaxisymmetric solutions, we use the known solution
of the wave equation and linear transformations. The present research is connected with the
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theory of information transmission: in particular, with the problems of distortion of the signal
shape [1] and directional wave formation.

It is known [4] that the homogeneous wave equation(
∂2

∂τ 2
− ∇2

)
ψ = 0 (3)

is satisfied by putting

ψnm = eimϕP m
n (x) · 1

r
vn (r, τ ) x = cos θ. (4)

Here ρ, θ, ϕ are the spherical coordinates, P m
n (x) is the associated Legendre function of the

first kind, n and m are integers such that n � m � 0, and the factor νn (r, τ ) is a solution of
the equation (

∂2

∂τ 2
− ∂2

∂r2
+

n (n + 1)

r2

)
vn = 0.

The general solution of the above equation can be written in the form

νn = rn+1

(
∂

r∂r

)n
f (τ ∓ r)

r
(5)

where f (τ ∓ r) are arbitrary real functions. Collecting expressions (4) and (5) we represent
solutions of the wave equation in terms of the transient spherical harmonics (see [5] for
details). Note that the function P m

n (x), in general, may be replaced by some solutions of
the Legendre differential equation W

µ
n (x), and eimϕ by eiµϕ where µ is an arbitrary complex

number. Generalization of the specific solution (1) is based on expressions (4) and (5).
Let us transform the variables z and τ into zβ and τβ , where

zβ = (z − βτ)√
1 − β2

τβ = (τ − βz)√
1 − β2

(6)

where β is an arbitrary complex parameter, and define the variables rβ , xβ , and ϕβ by relations

rβ = [
z2

β + ρ2
]1/2

xβ = zβ/rβ ϕβ = ϕ. (7)

Here and below the branches of square roots are arbitrarily fixed in general expressions, and
the obvious relation

ρ2/r2
β + x2

β = 1 (8)

defines branch of root (1 − x2
β)1/2. On the ground that derivation of an analytical function is

analogous to derivation of the real one, we transform the wave equation into(
∂2

∂τ 2
β

− 1

r2
β

∂

∂rβ

(
r2
β

∂

∂rβ

)
− 1

r2
β

∂

∂xβ

(
(1 − x2

β)
∂

∂xβ

)
− 1

r2
β(1 − x2

β)

∂2

∂ϕ2

)
ψ = 0 (9)

and, recalling (4) and (5), write the solution of the above equation in the form

ψnµ = eiµϕW µ
n (xβ)rn

β

(
∂

rβ∂rβ

)n
f (τβ ∓ rβ)

rβ

. (10)

Here we suppose that f
(
τβ ∓ rβ

)
is an analytical function.

In the case of the transformation

zβ̃ = − (z − β̃τ )√
β̃2 − 1

τβ̃ = − (τ − β̃z)√
β̃2 − 1

(11)
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we define the new variables rβ̃ , xβ̃ , ϕβ̃ as

rβ̃ = [
z2

β̃
− ρ2

]1/2
xβ̃ = zβ̃/rβ̃ ϕβ̃ = ϕ (12)

and by using the relation

x2
β̃

− ρ2

r2
β̃

= 1 (13)

obtain the equation in the form (9), where rβ, xβ and τβ have to be replaced by rβ̃ , xβ̃ and τβ̃ ,
and write its solution as

ψnµ = eiµϕW µ
n (xβ̃)rn

β̃

(
∂

rβ̃∂rβ̃

)n
f∓(τβ̃ ∓ rβ̃)

rβ̃

. (14)

The above procedure can be treated as substitution of expressions (10) and (14) into the wave
equation (3) represented in terms of variables (7) or (12).

We shall now derive families of wavefunctions from the solutions (10) and (14) by
supposing that β and β̃ are real magnitudes and the sign ‘+’ of square roots

√
1 − β2 and√

β̃2 − 1 is fixed. Here we use the notation β for values less than 1 and β̃ for values greater

than 1. In this case the wavefunctions ψnm(β) and ψnm(β̃) permit the same interpretation.

(i) When β ∈ [0, 1), the expression (6) is the Lorentz transformation of the variables τ, z̄,
the variable xβ in (7) is the cosine of the polar angle θβ ∈ [0, π ] of the frame of reference
moving with the velocity v = βc in the direction of the 0z axis, and W

µ
n (xβ) is the

associated Legendre function of the first kind P
µ
n (cos θβ). Then we obtain from (10)

solutions to the wave equation, which have the singularity at the moving point ρ = 0,
z = βτ . In the particular case µ = m we get spherical waves (the transient spherical
harmonics) in the moving frame ψnm (β), which may be treated as ‘subluminal’.

(ii) When β̃ ∈ (1, ∞) it is convenient to use solution (14). It is easy to verify that the phase
function � = τβ̃ ∓ rβ̃ as well as the variables rβ̃ and zβ̃ are real and greater than zero
inside a circular cone with the vertices moving with velocity greater than the velocity of
light

z = −ρ

√
β̃2 − 1 + β̃τ (15)

and the variable xβ̃ ∈ (1, ∞). Then supposing µ = m we choose function
W m

n (xβ̃) in the form of the associated Legendre function of the first kind P m
n (xβ̃) =

(x2
β̃

− 1)m/2 dm

dxm

β̃

Pn(xβ̃). This function is regular and single-valued on the xβ̃ complex

plane with the cut along the real axis from +1 to −1 [5]. When m is even, P m
n (xβ̃) is the

polynomial and when m is odd, the polynomial is multiplied by the algebraic function
(x2

β̃
− 1)1/2. We fix sign ‘+’ of square root since rβ̃ > 0 and ρ > 0. As a result, replacing

the factor exp(imϕ) by sin (mϕ) or cos (mϕ), we get the real solution of the wave equation
ψnm(β̃) inside cone (15), having singularities at the point ρ = 0, z = β̃τ moving with
the velocity greater than the velocity of light, as well as on the conical surface (15). This
solution may be treated as the ‘superluminal’ one, though the fronts of wave perturbations
move with the velocity of light.

It easy to verify that one can get from ψnm (β) an expression analogous to that from
ψnm(β̃) by supposing β > 1 (and vice versa by β̃ < 1 in ψnm(β̃)). In general, the constructed
solutions (10) and (14) may be written in the form

ψnµ = ψ (0) eiµϕW µ
n (x̃) Rn

(
∂

R∂R

)n
f (k (τ − βz ∓ R))

R
. (16)
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Here R is defined by relation (2), τβ

√
1 − β2 = τβ̃

√
β̃2 − 1 = τ − βz, ψ (0) and k are free

complex constants, and variables xβ and xβ̃ are

x̃ = ± (z − βτ) /R (17)

where ‘+’ corresponds to (7) and ‘−’ to (11). Expression (16) is a generalization of
axisymmetric solution (1), which is easy to see by choosing n = µ = 0 and k = 1.

Expression (16) can be also represented in the form of the finite series

ψnµ = ψ0eiµϕW µ
n (x̃)

n∑
l=0

a∓
nlR

−(l+1)f (n−l) (k (τ − βz ∓ R)) (18)

where coefficients a±
nl depend on n, l only, and f (n−l) are the (n − l)th derivatives of the

function f with respect to its argument. Note that by shift of z and τ , R and x̃ in (16) and (18)

can be replaced by Rsh =
√

(z − βτ + A)2 + ρ2
(
1 − β2

)
and x̃sh = ± (z − βτ + A) /Rsh, and

the phase function � by �sh = k (τ − βz ∓ Rsh + B), where A and B are free constants.
Let us now replace an arbitrary complex parameter β in the expression (16) by 1/β. Then

after simple transformations we write the family of solutions to the wave equation in the form

ψnµ = ψ (0) eiµϕW µ
n (xT ) T n

(
∂

T ∂T

)n
f (k (z − βτ ∓ T ))

T
(19)

where

T =
√

(τ − βz)2 − (
1 − β2

)
ρ2 and xT = ∓ (τ − βz)

T
. (20)

Hence, the axisymmetric solution is

ψ =
(

1

T

)
f (k (z − βτ ∓ T )) here ψ (0) = 1 (21)

and, finally, by supposing β = 0 we get

ψ =
(

1√
τ 2 − ρ2

)
f
(
z −

√
τ 2 − ρ2

)
. (22)

These expressions require an individual investigation. Here we select the following for special
mention.

(i) The substitution β ⇒ 1/β yields (19) from (16) and vice versa.
(ii) Supposing that β is real, τ − βz > 0 and k = 1/ (2 (β − 1)), we get from (21) in the

limiting case β → 1 the axisymmetric solution to the wave equation of Brittingham type.
(iii) The distortion factor 1/

√
τ 2 − ρ2 in (22) is a simple solution of the 2D wave equation,

while the distortion factor of the Euler wavefunction 1/r is the simple solution of the 3D
Laplace equation.

Note that so-called X-shape waves (see [6], table I, and also (20) and [7]) are particular solutions
of the wave equation that one can get from (16), (19) by supposing f = 1, or from the general
expression

ψnµ = ψ (0) eiµϕW µ
n (x̄) R̄n

(
∂

R̄∂R̄

)n 1

R̄
(23)

where x̃, R and xT , T are denoted as x̄, R̄.
This expression is a generalization of the simple solutions of the wave equation in the

form of distortion factor 1/R̄ and does not, in general, describe progressing waves. Note
that ‘subliminal–superluminal’ propagating waves of Euler type (1) were first discussed
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by Heaviside at the end of the 19th century [8]. Blokhintsev has derived the steady-
state description of the propagating wave generated by supersound oscillator [9]. Later the
axisymmetric solutions (1) were obtained in the problem of wave formation by a moving point
source for β ∈ (0, ∞) [10]. Formation of nonaxisymmetric waves by sources distributed on
a superluminal circle was considered in [11]. The above solutions hold functions f (�). It is
just a phase function � = k (τ − βz − R) that defines velocity of fronts of wave perturbations
(i.e. pulses or signals) equal to the velocity of light (sound) for ‘superluminal’ solutions of
type (16), (19).

In conclusion, we discuss the peculiarities of application of the constructed solutions to
description of the electromagnetic waves. We use SI units and denote the electric induction
and magnetic field strength vectors as D and H and suppose that parameters β and β̃ are real
magnitudes. As solutions of the wave equation (3), ψnm (β) and ψnm(β̃), have singularities
at the points moving along the 0z axis, it is natural to write them in cylindrical coordinates
ρ, ϕ, z. Then Maxwell’s equations are satisfied by the substitution that for TM waves is [12]

Dρ = ∂2

∂ρ∂z
u Dϕ = 1

ρ

∂2

∂z∂ϕ
u Dz =

(
∂2

∂z2
− ∂2

∂τ 2

)
u

Hρ = c

ρ

∂2

∂ϕ∂τ
u Hϕ = −c

∂2

∂ρ∂τ
u Hz = 0

(24)

and the scalar function ψ = ∂u/∂τ is a solution of the wave equation. So, by using the

wavefunctions ψnm (β), ψnm

(
β̃
)

, and expression (24), we find at once the components of the

magnetic field strength vector. To get the components of the electric induction vector, the
integration of the above wavefunctions with respect to time should be performed. When β and
β̃ are complex magnitudes, one can also get from (24) the components of vector H .

In addition, the spherical wavefunctions written in the spherical coordinates of the moving
frame ψnm (β), β ∈ (0, 1) for TM waves allow expression of the components of the electric
and magnetic field vectors Dβ and Hβ in terms of scalar function uβ(rβ, τβ) [12]

Dβr =
(

∂2

∂r2
β

− ∂2

∂τ 2
β

)
uβ Dβθ = 1

rβ

∂2

∂θβ∂rβ

uβ Dβϕ = 1

rβ sin θβ

∂2

∂ϕβ∂rβ

uβ

Hβr = 0 Hβθ = c

rβ sin θβ

∂2

∂ϕβ∂τβ

uβ Hβϕ = − c

rβ

∂2

∂θβ∂τβ

uβ.

(25)

Here we have to use the relation ∂uβ/∂τβ = rβψnm (β).
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